12 GeV Beam Physics and Hall-D

A.P. Freyberger, J. Benesch, A. Bogacz, Y. Chao, L. Merminga, Y. Roblin, M. Tiefenback, B. Yunn, Y. Zhang

> CASA Jefferson Lab

Thomas Jefferson National Accelerator Facility 12 GeV Beam Physics: Hall-D Collab

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Outline

- Summary of the January 2007 Beam Physics Review
- 12 GeV CDR design
- Non-linear effects: Multipoles
 - Emittance Growth
 - Halo
- Aperture and Occupancy
 - Minimizing Beam Steering
- Beyond the CDR design
 - Relaxing $M_{56} = 0$ requirement in the Arc.
 - Minimizing β in Spreader/Recombiner by moving new cyro-modules to front of north linac.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

A. Hutton (Chair/JLAB), V. Lebedev (FNAL), D. Douglas (JLAB), M. Borland (ANL)

Internal review of the studies to date of the 12 GeV CDR design. With special attention paid to CD-4, initial physics and "out-years" physics requirements.

Thomas Jefferson National Accelerator Facility 12 GeV Beam Physics: Hall-D Collabo

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ □ ● ● ○ ○ ○ ○

CD-4 Requirements and Expectations

		12 GeV					
		Expe	ected	CD-4			
End-stations		ABC	D	ABC	D		
Energy	(GeV)	>6	>10	>6	>10		
Current	(µA)	>0.002	>0.002	0.002	0.002		
ε _x	(nm-rad)	<6	<7	-	20		
εy	(nm-rad)	<2	<2	-	20		
$\delta p/p$	(% RMS)	< 0.02	< 0.02	-	-		
HALO	(ppm)	<30	<30	-	-		

Thomas Jefferson National Accelerator Facility 12 GeV Beam Physics: Hall-D Collab

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Initial Physics Beam Requirements and Expectations

		12 GeV				
		Expected		Initial Requirements		
End-stations		ABC	D	ABC [†]	D	
Energy	(GeV)	11	12	11	12	
Current	(µA)	85	5	85	5	
ε _x	(nm-rad)	<6	<7	10	50	
εy	(nm-rad)	<2	<2	5	10	
$\delta p/p$	(% RMS)	< 0.02	< 0.02	0.05	0.5	
HALO	(ppm)	<30	<30	100	100	

[†] Values for ABC represent the most stringent of the three requirements.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ の々で

Out-Years Physics Beam Requirements and Expectations

		12 GeV				
		Expected		Final Requirements		
End-stations		ABC	D	ABC [†]	D	
Energy	(GeV)	11	12	11	12	
Current	(μ A)	85	5	85	5	
ε _x	(nm-rad)	<6	<7	10	10	
εy	(nm-rad)	<1	<2	5	5	
$\delta p/p$	(% RMS)	< 0.02	< 0.02	0.05	0.5	
HALO	(ppm)	<30	<30	100	10	
[†] Values for ABC represent the most stringent of the three						

requirements.

・ロト・(四ト・(日下・(日下・))の(の)

The 12 GeV upgrade is not a green field design, doubling of energy is achieved by:

- adding 10 new 100 MeV cryomodules (to the 40 existing)
- adding a 10th Arc, resulting in an additional 0.5pass of acceleration for the new D end-station
- Re-use as much of the existing machine as possible
 - Use the original 4 GeV transport lattice and hardware
 - Modify magnets if needed, last resort design/build new magnets
 - C to H dipole conversion on 2m and 3m Arc magnets
 - New 4m dipoles for Arc10
 - New stronger quadrupole (MQR) for beam matching
 - Some new dipoles for the Spreader and Recombiners

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

12 GeV Optics; Review of 6 GeV Optics

- Spreader-Arc-Recombiner Section
 - Spreader
 - Achromatic vertical bend (to separate different energies)
 - Matching section
 - Arc
 - 180° horizontal achromatic bend
 - Arc1 & Arc2 tuned for high dispersion to provide energy centriod and spread monitoring
 - Arc3 \rightarrow Arc10 four super-periods, each with four FODO cells
 - Recombiner
 - Matching section
 - achromatic vertical bend back to linac level (mirror image of Spreader)
 - The whole system is globally isochronous
- Linacs
 - 25 RF+quadrupole zones
 - First pass, 120° phase advance for each FODO cell
- Courant-Snyder Matching
 - 6 GeV mainly uses Recombiner matching quads

Magnetic Field Specifications

- Beam quality is a result of the magnetic field quality (linearity or lack there of) of all the magnetic elements traversed by the beam.
- Large intrinsic beamsize will sample greater amount of non-linearities (multipoles) then small intrinsic beams.
- Large RMS centroid off design orbits will sample greater amount of non-linearities (multipoles) then on design orbits.

erson Lab

$\varepsilon_{\textbf{x}}$ growth due to synchrotron radiation and multipoles

Thomas Jefferson National Accelerator Facility 12 GeV Beam Physics: Hall-D Collab

イロン 不良 とくほう 不良 とうほ

ε_y growth due to synchrotron radiation and multipoles

Thomas Jefferson National Accelerator Facility 12 GeV Beam Physics: Hall-D Collab

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Halo Formation due to non-linearities

10⁸ particles tracked from Arc6 through to the Hall-D radiator.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Halo as a function of the RMS beam orbit

Jefferson Lab

Thomas Jefferson National Accelerator Facility 12 GeV Beam Physics: Hall-D Collabor

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二回 ● ○○○

Thomas Jefferson National Accelerator Facility 12 GeV Beam Physics: Hall-D Collabo

Beam Occupancy

◆ロ▶ ◆課 ▶ ◆語 ▶ ◆語 ▶ ○語 ○のへで

Thomas Jefferson National Accelerator Facility 12 GeV Beam Physics: Hall-D Collabo

Beam Steering

- Recent studies on determining the best RMS orbit for the 12 GeV design show that ±1 mm steering is optimistic.
- Steering is dominated by the "roll" in the dipoles (spreaders/recombiners/arcs), where 1 mrad tolerance is used.

Beam Occupancy: Unofficial

<ロ>

Thomas Jefferson National Accelerator Facility 12 GeV Beam Physics: Hall-D Collabor

Possible Improvements to the CDR design

Going beyond the 12 GeV CDR the following new designs are being investigated:

Move Hot Cryomodules to front of North Linac The larger gradient at the start of the Linac results in smaller β s in spreader and recombiner. (\$\$)

Change to 150° phase advance in the Linac Results in smaller β s in Spreader section. (FREE!!!)

Relax isochronous requirement Energy spread is ten times larger for the 12 GeV machine, this allows for larger bunchlength and some M_{56} in the Arc.

Double Bend Achromat (DBA) with existing magnet locations By retuning the existing Arc into a DBA the emittance growth is reduced by about a factor of 1.7/arc. (FREE!!!) But is it tunable/operable? Green Field DBA in Arc9 and ArcA By redesigning Arc9 and ArcA with about twice the number of quadrupoles and dipoles, the emittance growth can be squashed by a factor of 8. (\$\$\$\$\$)

Standard CDR 12 GeV optics. Dispersion (blue) goes negative to maintain $M_{56} = 0$ through the arc.

New Double Bend Achromat optics. Magnets in same location and type. $M_{56} \neq 0$ and lower *H* functions across the arc. Overall reduction in ε growth of 1.7 through the arc.

・ロト・西ト・ヨト・ヨー うへぐ

Thomas Jefferson National Accelerator Facility 12 GeV Beam Physics: Hall-D Collabo

Estimated Improvements in Beam Size for non-CDR design configurations

Jefferson Lab

s Jefferson National Accelerator Facility 12 GeV Beam Physics: Hall-D Collabo

- CDR design achieves the required emittance and energy spread specifications but....
 - Hall-D out-years halo specification not meet.
 - Large beam sizes in recombiners.
- Work continues on making the "decks" reflect reality (**present** and future).
- Complete simulations of beyond-CDR options, once decks are throughly vetted.
 - Cost/benefit of the options will be evaluated at that time.
 - Tunability/operability of options to be evaluated.
 - Beam size and Halo determination
 - Smaller beam sizes will help reduce halo, but will not know if it is sufficient until simulations are performed.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ の々で